

October 22, 1991

Mr. Ronald B. Kenyon International Technology Corporation 7 Cragwood Road Avenel, New Jersey 07001

Re: Cortlandt Site

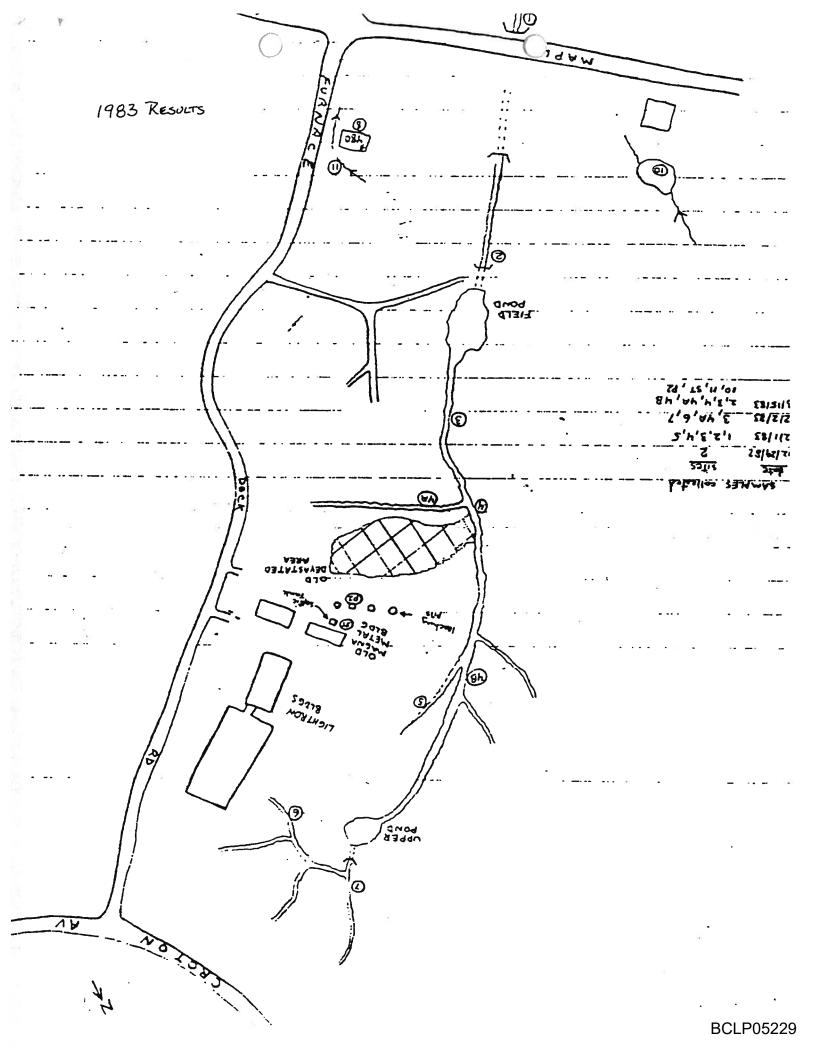
Dear Ron:

Enclosed are the following materials relating to our property in Cortlandt, New York:

- 1. Analytical results of samples taken by NYDEC on August 19, 1982.
- 2. Analytical results of samples taken by the Westchester County Health Department on February 1, 1983, February 2, 1983, and March 15, 1983.
- 3. Analytical results of samples taken by NYDEC on May 15, 1984.
- 4. May 21, 1991 letter from Molly Gallegher (NYDEC) to Les Skoski (Ebasco).
- 5. Table of Contents and Section 1.0 from Draft Field Sampling Plan prepared by Ebasco, April 1991.

Each of the analytical results includes a crude map that purports to show where the samples analyzed were taken. The maps that accompany the 1982 results and the Health Department results appear to be relatively straightforward. The 1984 results include a memorandum prepared by the NYDEC employee that supervised the sampling. The memo includes a table that describes generally where each sample was taken and the analysis requested. The map that accompanies the 1984 samples is difficult to reconcile with the table.

Mr. Ronald B. Kenyon October 22, 1991 Page 2


Based on a review of our file, it appears that Magma Metals had an electro-plating scrubbing operation and a degreasing operation on the site not later than 1981 (the Health Department and the NYDEC ordered Magma Metals to remove all industrial wastes in the building, the settling tank, and the leaching pits in July of 1979). It also appears that the TCE used in the degreaser was stored in an above grade storage tank somewhere near the parking lot.

I hope this information assists you in developing a sampling program. If you need further information, please do not hesitate to call me.

Sincerely,

Michael J. Baker Asset Manager

Enclosures

V	P	7	v													
		2														
ne re		Ø.													·	
A		*														
,		=														
į.		*														
		4														
		7					. 1.5* : 7	os:hz=	0076	OSHI	989	07/15				
		<u></u>				110	16:51	0/-	6 <u>2</u> >	08>	へこっ	۲۰				
		7					~W	80.	90.	20.	90.	ŝo.				
											10:-				<u> </u>	
		=					98	10.>	16.2	1017	13.2	10.2				
9)		9					۲۵	10.2	10.2	1517	10.2	10.2				
	S	0					رد	10.2	10.2	10'7	10.7	10.2				
	PARAMETERS	8					۲۶	100.>	200.2	200.2	1001×	200.2				
	3	1					314	10.>	10.2	10.2	10.2	10.2	•			
	PA	9					~Z	50.2	50.>	20.2	20.2	20.2				
		5					^フ	20.	50.>	20.2	40.2	20.2				
		7				,	اده	٤٤٠	0h.	12.	37.	.78-				
10.		6	···	gradts	71020	آدرد	-111	1>	17	17	0.1	17				
		4	7	٥٥+ ١٠١٥٠	20173	Q.	C'1 1'5	5'1	20	8	۷	1>				•
						_	ヨつエ	L	06	2.0	ο£	17				2 1/2
		1														
,			7-:	OI mrol	:	200		~								
					•		mple Type	WATFR	=	=	-	=				
							Sample Type	3								
₹~		-								<u> </u>						
T.							30				/		ji			
			· .				rain 20 1/30				σ.					
in p		ent	Brook)	~ <			9 4				ARFA					j _o
		rts	Ö	PP P	211183		1 1			2	1	A BOVE BROOK	83 81			
ı.		e p 🌢	E	ete	=		of sampling Fair previous Fair p	ŀ	٦.	Powb	DEUASTATFD PROOK	AB		1		
		Ă	اه	7 7 1	ત		ATIO	-	OUTLET	1	X X]				
		T.	Furnace	a , e a	1		8, 18	- 5	- 5	FIELD	DEUAST	30,				
		le a	9-1	for St./!	8				1	I I	20 00					
V. 2		☆	37	المراجع المراجع	111		1 0 X	u u	2000	I	070	A B				1
1		ınt	14	וני די	e d	**	1	AVE	હ	20	o C	25.7	69 69		Ì	
1 .		Col	등의	est.	S	ō	o Pr	11	۵	A B	2 2	RICE	17		1	1
1		1	File Fur	H M THE	J o	ěr	Day of sampling Day previous SAMPLING LOCA	MAPLE	FIELD	100' ABOUE	WHERE OLD	IN TRIBUTARY CONFLUENCE				1
1		ste	ال مو	Water results for parameters 1,2 + 3 in ppb 4-12 in ppm ond 3114 in maps//noul	Date of Samplings	Westher on:	- -	ž	F	0	3 3 2	2 0				
/		che	Re:	Sol	DA	3			7	3	7	5			l	
//		Westchester County Health Department	Sampling Report Re: File Corfla					_	"					1	ВС	P05230
'\		ž	s ·					[l	1	ţ	1	ļ	ı	1	i.

			7		.77)** (%)	1	3 <u>1</u>		4.		9	(5) (4)	8	4	i.e	Q.
		-	н	ы 2	S	PAF	PARAMETERS	ERS 9	9		77	~	3	ÿ	•	3	,	*	-
Rei File Furnace Brook Cortlandt (7)	1-		а				 			-			-					<u> </u>	-
Water results for parameters (1.1.1. A PP6 Soil results for parameters	OT mio!	£9	ه دله راد م	3 nadti															
Δ.			DICLION	دلالهده		<u>:</u>										*			
Day of sampling FAIR Day previous FAIR SAMPLING LOCATIONS	Sample Type	30T	C12, 1'5	1,1,1 TA:														<u> </u>	
2 FIELD POWD OUTLET	WATER	32	21	17						-		#	#	-			#		4
3 100' ABOUE FIFLD POND	11	2.01	٤1	17						} 			-	-			-		1
WHERE OLD DEUNSTATED AREA Y INTERSECTS BROOK	И	b.1	1.1	17					-	 			+	 			+		-
HA OLD DEUNSTATED AREA, OFF CENTER OF PORRA	t.	18	1-8	17					-		1		+						
4B 200' ABOVE SITE # 4 ABUJE		h*I	1>	·.		-			-	 		 	┼			 	\		
8 WFLL SUPPLY HOUSE IN 480 FURNACE DOCK AD	-	17	17	17			-		-	 	1	1	+				-		_1
11 DRAINAGE CHANNEL IN FRONT OF 41 480	:	1>	17	17					 	-			 						1
ST SEPTIC TANK DEILIND OID MAGUA METAL BIDG		001	17	17					 	 		 							ı
TANK ABOUF TANK ABOUF	7105	011		- 011															1

			Ŕ		9		1	N. ·	10			± 10 10	13	-1		*0		20		,
		-	m	3	Vo	PARAMETERS	HET	PRS -	9	뒥	71	=	=	7	2	-	8	2	12	. 2
pling Report Rei File Furnace Brook) Cortland (7)	z-1		307													1196 <u>2—</u> 22 10—24				
Water results for parameters 1,2 + 3 in ppb, 4-12 in ppm nnd 13 in mapilinom! Soil results for parameters	I mrol		144+3 070 00 e + 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																	
Date of Samplings 212183	•			014 01 11															(
of sampling rain previous Fair	Semple Type	ヨつエ		ا د ه	^2	ΨZ	71:	40 40	رد ا	98		~w	1233	1.3-,-			- #)#	
3 100' About FIFLD POND	water	081	Eh SI	οξ.	70.	ح∙ەق	10,2	200.>	10.2		1017	ro.	OE >	ashi					-	
A TRIBUTARY PA	=	59	17	4E.	01.	50.	10.2	700.7	10.2		10.>	{0.	017	05F						
TENENTARY REPLY DE LIGHTRON WARRINGS	=	11	17 h	٥٢٠	70'>	20.2	10'>	100.>	12'>	10.>	10'7	75.	0 H	のひんて						
BROOK ABOUF ALL LIE	£	17	17	82.	70.	50.2	16.2	Z02.>	13.2	10.>	19.7	۲٥٠	0{>	2:1:0					(+
1				· ·																
			-																	
BCI																				1
_P05232								J												

EXHIBIT A - PPROXIMATE LOCATION JAM WHICH
SAMPLES WILL TAKEN ON 8/19/82

LIGHTRON URNACE BROOK WAREHOUSE 120' CLIFF MARSH MARSH AREA 1982 RESULTS

MAGNA MET LS. SITE SKETCH
WESTCHESTER CO., CORTLANDT, N.Y.
(7-7-BI, 10 SCALE, RET.
NEW YORK STATE

DEPARTMENT OF ENVIRONMENTAL CONSERVATION HAZARDOUS VASTE COMPLIANCE TEAM

general testing?

nange Street er. NY 14608 454-3760

12... NY 14202 51 883-4990

85 Trinity Place Hackensack, NJ 07601 (201) 488-5242

ABORATORY REPORT

Client William F. Cosulich Assoc.

> 20 W. Ridgewood Ave. Ridgewood, NJ 07450

Att: Jim Kelly

Job No. <u>J-964</u> Date <u>Sept. 20, 1982</u>

:ample(s) Reference

Sludge Pits on ISC Properties

0.#		2.		CAL RESULTS stated otherwise)
ample Description	2 Pit 1	1+ P*- A	3* Pit 2	4* 5* Pit 4 Pit 5
ate(s) me(s)		:	, e ¹	
pH ** Cyanide Chlorides Phenolics Sulfates Nitrates	9.4 .42 62 .009 42 .67	34 215 <5 12	8.2 2.3 44 015 134 1.29	6.4 6.9 .91 .38 .010 .012 182 <10 4.5 .94
Cadmium Chromium., Total Chromium, Hex Copper Iron Lead Manganese Nickel	0.03 <0.05 <0.01 23.9 0.90 <0.1 0.04 4.2		<pre>0.025 <0.05 <0.01 176 <0.05 <0.1 1.52 26.6</pre>	0.025 0.025 <0.05
Zinc	0.42	5 C	74	81
* Analysis on EP To: Federal Register,	cicity Extra Vol. 45, No	ict; F edu	ures in according 1980, Rule	dance with es & Regulations

Analytical procedures in accordance with Standard Methods for the Examination of Water and Wastewater, 14th Edition and Methods for Chemical Analysis of Water and Wastes, EPA. (<) indicates lowest detectable concentration with procedure

Job No. J-964

Date

Sept. 20, 1982

William F. Cosulich Assoc.

20 W. Ridgewood Ave. Ridgewood, NJ 07450 Att: Jim Kelly Sample(s) Reference

Quality Control Report

te samples

() received (x) collected

by General Testing

8/19/82

0.#					TICAL RESULTS nless stated otherwise)	
Sample Description Date(s) Fime(s)	D 1st Value mg/l	uplicates 2nd Value mg/l	EPA Standard Recovery X	Amt. Added mg	Spiking Amt. Recovered mg	Recovery
thlorides fulfates trates	3 45 •94	3 38 •96	107 84 101	15.00 20 1.00	15.16 21.5 1.09	101 108 109
admium Laromium Tot. Copper ron ead Manganese wickel inc	<0.025 <0.05 0.60 0.84 <0.1 1.9 8.3 14.0	<0.025 <0.05 0.60 0.82 <0.1 1.9 7.8 14.0	100 93 104 97 - 100 94 102 98	0.05 0.05 0.60 0.40 0.1 0.04 0.60 0.05	0.05 0.05 0.49 0.43 0.1 0.04 0.53	100 100 82 108 100 100 88 100

Analytical procedures in accordance with Standard Methods for the Examination of Water and Wastewater, 14th Edition and Methods for Chemical Analysis of Water and Wastes, EPA. (<) indicates lowest detectable concentration with procedure used

Laboratory Director

GENERAL TESTING CORP. CHAIN OF CUSTODY RECORD

() INT INC.		TESTING COR			
A STATE OF THE STA	CHAIN OF	CUSTODY REC	<u>URU</u>		
	RON			4.27	
STONAL E	DOCK RE	OAF !'E: Cit	Erskill ty	State	
Sample Source:	Producer_		Hauler	Disposal Site	
	Other				
Shipper Name:		<u>:</u>			
Shipper Address: Stree		City	State	Zip	
	•	1000			
Shippers Telephone # (Collector's Name: RICA Field Information: Collectors	JARD C	CHEIBL	5 ; 11hs	Soul hike	
Collector's Name:	rint	م ن	:/Sign	nature >	
Field Information: Of		X0 ()			*
Relinquished by:	Rece	ived by:		Date/Time	ė
	1. s	igr			
1. <u>sign.</u>		01			
for					
2. <u>sign</u> .		or		/	
for		ign.			
3. <u>sign.</u>		or	•	/	
for Received for Laboratory	bv:	\$ ¹⁸			
Method of Shipment:					
			Sample	Number of	
Sample Sample Location	Date	Time	Type	Containers	
MANHOLE 2 TUNT XI.	8/19/82	11:00	compes or	1 TEEL SAND	٠
A COURE (1) TIME 50 +0			COMPOSIT	Trillens, AND	FOI DE.
17 # 5 (5) Had 05 C	8/19/82	11:46	=	178:56001	-
(4)	5/19/22	12.00	Comisoni	1-	•
(2	,	• .	35	12FLUNSer7 1 >1.06-	
11 #23 .	19/12	12:15	GRAB	7 TEFLON ; DEC	てもらん
1 = 1 (2) +c.5 DE ZF	8/19/8-	1:50	SAMFLES	= PLASTIC) 1 SE	<i>T</i>
17 = 119	 				95
ķ.			· · · · · · · · · · · · · · · · · · ·		-
					_
	-	-	1	·	
				-	-

New York State Department of Environmental Conservation

MEMORANDUM

TO: FROM: UBJECT: File

Todd Ghiosay

ISC/Magna Metal Resampling, Cortlandt (T), Westchester Co.

DATE:

June 5, 1984

SAMPLING TRIP REPORT DIVISION OF ENVIRONMENTAL ENFORCEMENT

ENFORCEMENT CATEGORY: Inactive

FIELD UNIT: White Plains

SAMPLING DATE: May 15, 1984

Sampling Locations: (see attached sketch of site) 1.

Sample Description: (see sample table) 2.

Laboratory Receiving Samples: Versar, 6850 Versar Center, 3. P.O. Box 1549, Springfile, VA

Sample Dispatch Data:

Location sent from: White Plains DEC Office

Airbill Number: 735 300 683

Date and Time Sent: May 16, 1984, 12:00 noon.

Sent by: Todd Ghiosay, signed out by Bill Rubin

Sampling Personnel: 5.

> Duties on Site Organization Name

Sample, collection NYSDEC, White Plains Todd Ghiosay

notetaker

Terri Gerrish NYSDEC, White Plains Sample, collection

Wesley Gamble NYSDEC, Albany Core Sample, collection

notetaker

Safety Requirements: 6.

.

Latex gloves (for sludge samples)

- * Rubber boots (for water samples)
- * Nitrile gloves (for water samples)
- Decontamination: solution of alconox and water scrub and rinse boots and gloves

7. General Information and Observation:

- Arrived on site at 1:30 p.m., sampling event completed by 8:00 p.m.
- Sample containers

Designated Letter	Container Type	Preservative
A	16 oz. brown glass jar	None
В	250 ml plastic	NaOH to pH >12
Č	250 ml plastic	H NO ₃ to pH <2
D	250 ml plastic	None
Ē	40 ml VOA vials	None
E Duplicate	40 ml VOA vials	None

- Weather was breezy with temperatures in the high sixties. Partly sunny in the afternoon changing to overcast skies later in the day.
- Recent bulldozing and land clearing took place in a small area west of the old Magna Metals building and in a much larger section on the northern end of the property. A Baker properties representative told me a records warehouse is to be constructed on the northern portion of the property.
- T. Gerrish noted that the area near the distribution basin (pit 1) had been disturbed since her visit in 1982. The basin is now covered by slabs of concrete.
- While walking Furnace Brook to find sampling points, small amounts of oily materials were observed on the suface of some of the smaller tributaries flowing into Furnace Brook. Small amounts of oil liquids were also observed in the marsh area.
- Al sample containers were received from Versar accompanied by an information sheet indicating the cleaning procedure used by Versar.
- All sludge samples were obtained using small diamter stainless steel augers attached to stainless steel extensions. Each auger tip was cleaned or rinsed in the following order: (a) aslconox and water, (b) tap water, (c) hexane, (d) acetone, (e) alxonox and water, (f) tap water, (g) distilled water.

- All water samples were collected directly into the appropriate jar, then preservatives added immediately.
- All sediment samples were collected using a pre-cleaned polyethylene scoop.
- Field pH was taken with pH papers, and therefore is very approximate.
- 9. Report completed by Todd Ghiosay on 5/23/84.

			1	\bigcirc i	1
Analaysis Requested JAR A - Total Metals (7000 series) Volatiles (8240)	JAR B - Total cyanide (335.2)	JAR C - Total metals (7000 series)	JAR D - alkalinity (310.1) specific conductance (120.1) pH	JAR E - Volatiles (8240)	-method (8240) -total metals (7000 series) -EP tox for metals
Sample Description -sediment composed of brownish sand and silt -clear water, pH 6	-sediment composed of dark mud and decaying organic matter -clear water pH 5	Same as sample 02 pH 5-6	Same as sample 02	Slightly yellowish water pH 6-7	Layered clay like sludge of various colors - Grey, green aquamarine, red layers - small amount of brown sand
Matrix -sediment (placed in Container A) -water	<pre>-sediment (placed in Container A) -water,</pre>	<pre>-sediment (placed in Container A) -water</pre>	<pre>-sediment (placed in Container A) -water</pre>	Water	Sludge cake
Sampling Point Upstream north of Magna Metals	Mid-stream west of Magna Metals Building	Marsh area south west of Magna Metals Building	Downstream south west of Magna Metals Building	Distribution tank adjacent to old Magna Metals Building	Leaching Pit #4
Sample Number P-384-VO5-01 A,B,C,D,E, E Duplicate	P-384-VO5-02 A,B,C,D,E, E Duplicate	P-384-V05-03 A,B,C,D,E, E Duplicate	P-384-V05-04 A,B,C,D,E, E Duplicate	p-384-VO5-05 B,C,D,E, E Duplicate	P-384-V05-06 A

Analaysis Requested Same as P-384-V05-06	Same as P-384-VO5-05			
Sample Description Layered clay like sludge, green, gray red, magenta, lavender layers	Clear water pH 6	©.	E.	3
Matrix Sludge cake	Water		·	
Sampling Point Leaching Pit #2	Leaching Pit A			
Sample Number P-384-VO5-07 A	P-384-VO5-08 B,C,D,E, E Duplicate			

Sample	#:		
P 384	V05	01 A	

DATE: <u>7-9-84</u>

PROJECT #: <u>857-28</u>

LAB #: <u>994</u>

PARAMETER	DETECTION LIMIT	SAMPLE CONCENTRATION	PARAMETER	DETECTION LIMIT mg/ky	SAMPLE CONCENTRATION Mg/kg
As	0.5	<u> <0.5</u>	Be	0.1	< 0.1
Sb	0.5	_<0.5	<u>Cd</u>		< /.
Se	0.5	<0.5	<u>Cr</u>	0.4	7.5
T_L	0.5	<u> <0.5</u>	<u>Cu</u>	0.4	<u>5.7</u>
Ha	0.1	< 0.1	<u>N;</u>	1.5	30.1
		.,,	Ag	0.3	0.30
			<u>Zn</u>		22.3
			<u> </u>	-	

COMMENTS	•

C= BLANK	CORRECTED		
_		· ·	
		•	

Test Methods for Evaluating Solid Wastes, SW-846, 2nd Edition, USEPA, Washington, D.C. 1982 Popert Mayfield Lab

Sample #:			
P 384 VOS	02	A	

DATE: 7-9-89
PROJECT #: 857-28
LAB #: 995

PARAMETER As SL Se T1 Hg	DETECTION LIMIT Mg/kg O.S O.S 1. † O.S O.1	SAMPLE CONCENTRATION Mg/kg. 0.65 <0.5 /.8 <0.5 <0.1	PARAMETER Be Cd Cr Cu Ali Ag	0etection Limit Mg/kg- 0.1 1. 0.4 0.4 1.5	SAMPLE CONCENTRATION Mg/kg <0.1 <1. 8.6 115. 40.3 <0.3 28,2
2. 14			$\underline{Z_n}$		20,2
					
-				-	

COMMENT	S
COINICIO	

<u> </u>	BLANK C.	ORRECTED					•
<u>+ :</u>	PETECTION	LIMIT	CHANGED	DUE	70	SAMPLE	DILUTION

Procedures in accordance with: Test Methods for Evaluating Solid Wastes, SW-846, 2nd Edition, USEPA, Washington, D.C. 1982

Sa	mple	#:			
P	384	V05	03	A	

DATE: 7-9-84

PROJECT #: 857-28

LAB #: 996

PARAMETER	DETECTION LIMIT	SAMPLE CONCENTRATION	PARAMETER	DETECTION LIMIT Mg/Kg	SAMPLE CONCENTRATION Mg/kg_
As	0.5	<0.5		0.1	<0.
<u></u>	0.5	_ <0.5_	<u>Cd</u>		
Se	0.5	0.61	<u>Cr</u>	0.4	21.9
T.e ·	0.5	<0.5	Cu	0.4	36.5°
Ha	0.1	<0.1.	. N;	1.5	56.2
			Aa	0.3	<0.3
₩ ±			Zn		37.3
					11 12
					
					

COMMENTS:			
د >	BLANK	CORRECTED	

Test Methods for Evaluating Solid Wastes, SW-846, 2nd Edition, USEPA, Washington, D.C. 1982

Sample	#:		
P 384	V05	04 A	

DATE: <u>7-9-84</u>

PROJECT #: <u>857-28</u>

LAB #: <u>997</u>

PARAMETER	DETECTION LIMIT	SAMPLE . CONCENTRATION	PARAMETER	DETECTION LIMIT mg/kg_	SAMPLE CONCENTRATION
As	_0.5_	<0.5	Be	0.1	<0.1
Sb	0.5	<0.5			<u> </u>
Se	0.5	<0.5		0.4	16.9
T.L	0.5	<0.5	<u>Cu</u>	0.4	100.
Hq	0.1	<0.1.	<u></u>		39.8
			Ag	0.3	< 0.3
8.5			20_		39.9

COMMENTS:		
C = BLANK CORRECTED		
•	6	
		-

Test Methods for Evaluating Solid Wastes, SW-846, 2nd Edition, USEPA, Washington, D.C. 1982

Slidge (results of horower Court in incl.

Sample #:

P 384 Y 05 06 A

METALS RESULTS

DATE: 7-9-84

PROJECT #: 857-28

LAB #: 998

PARAMETER	DETECTION LIMIT	SAMPLE CONCENTRATION	PARAMETER	DETECTION LIMIT	SAMPLE CONCENTRATION Mg/Ks
As	25.4	27.5	Be_	0.1	_ <0.1
<u>Sb</u>	0.5	<0.5	<u>cd</u>		3.1
Se	2.5+	7.55	<u>Cr</u>	0.4	223.
TL	0.5	<0.5	<u>Cu</u>	0.4	3690.
Hq	0.1	<0.1	<u>N:</u>	1.5	27500.
			Ag	0.3	0.81
25.35			$\underline{z_n}$		8310.C
				•	
					
			1		

+ Ditection	limit changed due to sample dilutes	~ .
_	CORRICTED	

Test Methods for Evaluating Solid Wastes, SW-846, 2nd Edition, USEPA, Washington, D.C. 1982

5 idge (the horself (u), ni, then, l

P 384 VOS 07

METALS RESULTS

DATE: <u>7-9-84</u>

PROJECT #: <u>857-28</u>

LAB #: <u>999</u>

PARAMETER	DETECTION LIMIT	SAMPLE CONCENTRATION	PARAMETER	DETECTION LIMIT Mg/kg	SAMPLE CONCENTRATION mg/kg
As_	10-4	5.0	<u>Be</u>	0.1.	<0.1
Sb	0.5	<0.5	<u>Cd</u>		1.6
Se	10.+	13.0	Cr_	0.4	5.7
TL	0.5	<0.5	Cu_	0.4	15,800°
Hq	0.1	<0.1	N:	1.5	13,800.
			Ag	0.3_	0.70
* * *			<u> </u>		(9500. E
					
					•

COMMENTS	
COMMENIA	1

+ Q. te	ction l	imit changed	due to	sample	dilution.	•
		CORRECTED			*	
					20	

Test Methods for Evaluating Solid Wastes, SW-846, 2nd Edition, USEPA, Washington, D.C. 1982

Versal:

P 384 YOS 06 A

EP TOXICITY TEST METALS RESULTS

DATE: 7-9-84

PROJECT #: 857-28

	CC	NCENTRATION IN mg/1	
PARAMETER	DETECTION LIMIT	EP TOXICITY MAXIMUM CONCENTRATION	SAMPLE CONCENTRATOR
Arsen1c	0.01	5.0	0.100
Barium	0.5	100.0	40.5
Cadmium	0.1	1.0	<0.1
Chromium	0.2	5.0	< 0.2
Lead	0.5	5.0	40.5
Mercury	0.002	0.2	40.002
Selenium	0.01	1.0	0.220
Silver	0.01	5.0	< 0.01

Procedures in accordance with:

Test Methods for Evaluating Solid Wastes, SW-846, 2nd Edition, USEPA, Washington, D.C. 1982

Versar.

San	mple #	ŧ:		
P	384	v05	07	A

EP'TOXICITY TEST METALS RESULTS

DATE: 7-9-84

PROJECT #: 857-28

LAB #: 499

DNCENTRATON
37
•
2
)

Procedures in accordance with:

Test Methods for Evaluating Solid Wastes, SW-846, 2nd Edition, USEPA, Washington, D.C. 1982

Sample		#:		
P	384	V05	01	C

Total METALS RESULTS

DATE: <u>7-9-84</u>

PROJECT #: <u>857-28</u>

LAB #: <u>1006</u>

PARAMETER	DETECTION LIMIT	SAMPLE CONCENTRATION Maye	PARAMETER	DETECTION LIMIT	SAMPLE CONCENTRATION MALE
As	10	<10.	<u>Be</u>		<u> </u>
<u>Sb</u>	10.	< 10.	<u>Cd</u>		<u> </u>
Se	10.	< 10.	<u>Cr</u>	<u> </u>	<u>~4.</u>
TL	10	< 10.	<u>Cu</u>	4.	<u> </u>
Ha	0.4 *	< 0.4	<u>N:</u>	15.	<u> </u>
			Aq		<3
9			<u>Zn</u>		21.6

CO	-	2	•	M	TC	
LU	١	н	L	П	13	2

* Detection limit changed due to sample.	dilution.
C = BLANK CORRECTED	

Test Methods for Evaluating Solid Wastes, SW-846, 2nd Edition, USEPA, Washington, D.C. 1982

Sample	#:			
P 384	Y05	02	C	

DATE: <u>7-9-84</u>

PROJECT #: <u>857-28</u>

LAB #: <u>1007</u>

PARAMETER	DETECTION LIMIT	SAMPLE . CONCENTRATION	PARAMETER	DETECTION LIMIT 12/2	SAMPLE CONCENTRATION Mg/L
As		_<10	<u>Be</u>	<u> </u>	<u> </u>
<u>Sb</u>	10.	<10.	Cd		<10.
Se	10	<10.		4.	<4
TL	10.	<10.	<u>Cu</u>	4.	<u> </u>
Hg	0.2	<0.2	_Ni_	15.	<15
		*	Aq		<3
4.6			Zn	10.	<10. ^c

COMMENTS:		•	
	C : BLANK CORRECTED	¥	•
	8		

Test Methods for Evaluating Solid Wastes, SW-846, 2nd Edition, USEPA, Washington, D.C. 1982

Sample #: P 384 V05 03 C

一一,

METALS RESULTS

DATE: <u>7-9-84</u>
PROJECT #: <u>857-28</u>
LAB #: <u>/008</u>

PARAMETER	DETECTION LIMIT	SAMPLE CONCENTRATION	PARAMETER	DETECTION LIMIT Mg/L	SAMPLE CONCENTRATION
As	10.	<u> </u>	Be_	1.	<u> </u>
Sb		<10.			<10
Se	10.	<10.	Cr	<u>4.</u>	<u> </u>
TL		< 10.	Cu	4.	<4.°
Ha	0.2	<0.2	<u>Ni</u>	15.	<u> </u>
			Aq	<u> </u>	< 3.
121.0			<u>z</u> n		<10. C
= = = = = = = = = = = = = = = = = = =					
		-		. —	

COMMENTS:		38
	C = BLANK	CORRECIED

Test Methods for Evaluating Solid Wastes, SW-846, 2nd Edition, USEPA, Washington, D.C. 1982

Sample	#:			
p 384	V05	04	C	

下江

METALS RESULTS

DATE: 7-9-84

PROJECT #: 857-28

LAB #: 1009

PARAMETER	DETECTION LIMIT Mg/L	SAMPLE CONCENTRATION	PARAMETER	DETECTION LIMIT 49/2	SAMPLE CONCENTRATION May / S.
<u>As</u> ·	10-	<10.	βe	<u></u>	<u> </u>
Sb	10-	<10	Cd_		
Se	10.	<u><10.</u>	<u> </u>	4.	<4.
<u> </u>	10.	<10.	<u>Cu</u>	4.	<u>6,9</u>
<u>Ha</u>	0.4*	< 0.4	<u>Ni</u>	15.	<15.
		•	Ag	<u> </u>	<3.
: 	-		<u>Z</u> n	10.	17. ^C

1-11		
LU	_	TS:

* Retection limit	changed	due	to	sample	dilution.	
	O.				·	- "
C= BLANK CORRECTED						····
						•

Test Methods for Evaluating Solid Wastes, SW-846, 2nd Edition, USEPA, Washington, D.C. 1982

Versaline.

Distribution lank

Sample #:

P 384 VOS 05 C

下:北

METALS RESULTS

DATE: 7-9-84

PROJECT #: 857 -28

LAB #: 1010

PARAMETER	DETECTION LIMIT	SAMPLE CONCENTRATION	PARAMETER	DETECTION LIMIT Mg/L	SAMPLE CONCENTRATION
As	200.4	550.	·Be		<u> </u>
<u>Sb</u>	10.	<u>~ 10.</u>	<u></u>	10.	<10.
Se	50.*	237.	<u> </u>	4.	9.2
<u> 71</u>	10.	<10.	<u>Cu</u>	4.	7810.
Ho	0.2	<u> </u>	N;	16.	610.
			Ag	3.	<u> </u>
	* 3				261.
	1				
					

COM	IMC	М٦	rc :
LUF	INE	14	, .,

	*	DETECTIO	N LIMIT	CHANGED	DUE TO	SAMPLE	DILUTION		
4	C =	BLANK	CORRECTED					. 🕫	2

Procedures in accordance with: Test Methods for Evaluating Solid Wastes, SW-846, 2nd Edition, USEPA, Washington, D.C. 1982 (KM)

THA" water

Sample #: P 384 Vo5 08 C

TALL
METALS RESULTS

DATE: 7-9-84
PROJECT #: 857-28
LAB #: 1011

PARAMETER	DETECTION LIMIT	SAMPLE . CONCENTRATION	PARAMETER	DETECTION LIMIT	SAMPLE CONCENTRATION
As	10.	<10.	<u>Be</u>		<u> </u>
Sb	10.	< 10.	<u>Cd</u>		<u><10.</u>
Se	50.*	91.	C	4	<u> </u>
<u>TL</u>	10.	<10.	Cu_	<u>4.</u>	670. ^{<}
Hg	0.2	< 0.2	<i>Ni</i>	15.	<u></u>
			_Aq		<3.
24.23			_Zn_		1570.°
14					

COMMENTS:	changed due to sample dilution.	
paratus times	Granges Just 25 15 15 15 15 15 15 15 15 15 15 15 15 15	1760
C= BLANK CORRECTED		
*		

Test Methods for Evaluating Solid Wastes, SW-846, 2nd Edition, USEPA, Washington, D.C. 1982

Versar_{ne}

DATA SUMMARY REPORT 857.2-28

4	acetone	trans-1,2- dichloro- ethene	' trichloro- ' ethene '	vinyl ' chloride '	total xylenes	ethyl- benzene
-374-VOS-01-A	ND ug/kg	NO	ND ·	ND .	ND	ND .
m. ts. resum '-374-y05-02-A'	ND ug/kg	ND	· ND ·	ND .	ND	NO
Mansh 2-374-vos-03-a' Sadimart	190 ug/kg	300	30	ND .	ND .	· ND
Donas Grand P-374-VOS-04-A' 2 dem ent	1400	ND	2700	ND .	NO	. ND
P-374-VOS-06-A'	ND ug/kg	ND	680	ND '		ND
P-374-VOS-07-A	ND ug/kg	NO NO	2600	ND '	7100	. 3300
P-374-VOS-01-E	ND ug/1	NU	ND .	ND 1	ND	· ND
P-374-V0S-02-E'	ND ug/1	NO I	6.6	ND '	ND.	ND
P-374-VOS-03-E'	ND ug/1	NO	16		ND	' ND
P-374-VOS-04-E'	ND ug/1	25	62	ND	ND	· ND
ン 는 r c . P-374-VOS-05-E' (344-12)	ND ug/1	' ND	15000	ND '	ND	' ND
P-374-VOS-06-E	ND ug/1	16	(190	ND 1	МО	· ND

No Dib-E present (D&E N. 1902?) New York State Department of Environmental Conservation Region 3 21 South Putt Corners Road New Paltz, NY 12561-1696 914-255-5453

Thomas C. Jorling Commissioner

May 21, 1991

Les Skoski
Ebasco Environmental
160 Chubb Ave
Lyndhurst, NJ 07071
Re: Magna Metals Site # 360003

Dear Mr. Skoski,

I enclose the following comments on the proposed Field Sampling Plan for the RI/FS activities at the subject site.

To summarize our proceedings thus far:

At our original meeting at this site we discussed the idea of an initial "screening" sampling round to up-date our information and determine the scope of the RI. Due to the ongoing consent order's specification that an RI Workplan be approved prior to its signing, review of current data, and your preference to conduct surface sampling simultaneously with well drilling, we have expanded the scope of this sampling plan so that it will serve as the Field Sampling Plan called for in the RI. This changes the purpose from "screening" to "defining the extent of contamination".

Field Sampling Plan

1-7 Although general history can be put into the RI report, sampling history and <u>all</u> sampling results are essential as they are the foundation of the FSP. Type of waste disposed and all 1978, and some 1983 & 1984 sampling results are missing. It should be noted that leach pits (excluding septic tank & holding tank) were emptied by suction hose in 1979. Each sampling summary table must include locations of samples, ie. in Table 1-4 sample 04 corresponds to sediment in brook 100' above pond. All of the above information is provided in the enclosed sampling summaries and Site Description & History.

1-9 The finding of 2,700 PPB Vinyl Chloride in brook sediments is not mentioned. The conclusion that "the primary emphasis of the field investigation should be on volatile organics" is correct, however, the possibility of heavy metal contamination of the soils beneath and surrounding the pits must be

considered. (see 3-19)

TABLE 3-1 Samples for VOAs should not be pH adjusted.

3-14 One Soil/Sludge sample must be taken from the holding tank at the side of the building and from any other pits discovered during clearing of area. Water standing in the tanks must be sampled if it is present.

3-16 One sediment sample should be taken at the inlet of the pond.

3-18 Decant water from sediment samples before transferring to

bottles.

- 3-19 It is stated that 3 shallow samples will be taken at mapped locations and 3 at the mid-point of the slope. This will tell us if contamination from the overflow of the pits in 1979 is still present but will not find contamination leached from the pits. The pits were designed to leach into the soil and plating wastes were discharged to them for a period of possibly 29 years (assuming the age of the pits corresponds to the start of operations). To find this we need to do either borings or test pits in the expected area of discharge to a depth of at least ten feet; OR remove the pits and sample beneath them.
 - In reviewing the files I have found several references to a solvent storage tank which was removed from the northwest corner of the Magna Metals building. One soil sample should be taken from this area.
- 3-21 Air rotary drilling & mud rotary drilling will not be approved as field changes unless supplementary information is provided. For air, provide manufacturer's spec's describing filtration method; for mud, detail plans to mitigate its capacity to adsorb contaminants, the possibility that it may bring contamination to the hole, and the problem of its capacity to to adhere to the sides of the hole.
- 3-22 How will water table elevation be determined during drilling? (By measuring water depth or observing split spoon samples?).
- 3-23 It is stated that well screens will be .010 or .020. If this is to be a field call by the site geologist based on observation of subsurface soils be sure that driller comes prepared with both sizes of screens, as well as appropriate filter pack sands.
 - Wells may be developed no sooner than 24 hours after installation.
- 3-24 One sample at <u>each geologic change</u> at each well, as well as one sample from the screened area, should be analyzed for particle size or Atterbergs Limit.
- 3-25 #5 Check samples with HNu immediately upon opening split spoon.
- 3-27 Submersible pumps are not allowed in monitoring wells.
- 3-28 #11 Bailers and wire or cord must be dedicated. Decon must be done on fresh wire or cord, bailers should be brought to the site deconned and wrapped in foil. (What cutting oils??)
- 3-32 Decon can be done with Methanol and DI water; no hexane, no acetone. Again, bailers must be dedicated. Sampling equipment such as triers, scoops, trowels are best if dedicated, but may be de-conned if necessary.
- 4-1 All field changes must be jointly approved by the Consultant Project Manager & the NYSDEC Project Manager before implementation.

Health & Safety Plan

- 5 Again, the presence of Vinyl Chloride is not mentioned. QAPP
- 24 Again, all field changes must be jointly approved by the Consultant Project Manager & the NYSDEC Project Manager before implementation.

Comments from Fish & Wildlife are included.

Comments from OA/OC are included. Note: After reviewing 1984 samples we have found that the site was not, as we had thought, previously screened for PCB's, Dioxins and Pesticides (lab results were misleading). This means that we will need to do the full TCL on our first sampling round.

Please submit a schedule for these sampling activities with the revised FSP & QAPP.

Also enclosed you will find a Critical Path Analysis chart, graph and table. I have listed the tasks planned on this site and determined their most probable sequence. Please look carefully at the tasks assigned to "PRP" and advise me as to the accuracy of the estimated duration of these activities. If you have suggestions regarding the timing of the tasks, please let me know.

CPA Activities which have not been discussed previously include: *Existing wells survey: The Department of Health has decided not to take on this task, but our sampling efforts will be strengthened if we can sample wells either on the site or near it before finalizing the FSP. We also need this survey for the Risk Assessment.

<u>Habitat Based Assessment</u>: Suggested by our Fish & Wildlife Division and explained in the enclosed documents.

*Survey Pits: We discussed the need to locate all existing pits. in order to predict contaminant migration we need to also describe the pathways of the connecting pipes and the design of the pits. (We don't really know where the leachate was designed to flow or whether the septic tanks and the leach pits are connected)

<u>Determination of clean-up levels</u>: We will want to define clean-up levels for each contaminant in each matrix in the schedule of work document and refine them (with guidance from our Technology Section) as data comes in. The Site Characteristics Fact Sheet needs to be completed once all analytical data has been recieved.

* to be done prior to Field Sampling.

I also wanted to note a few items that should be included in your RI report:

The registry form for the site

A topo map indicating relative location of site.

Note that filling in or removal of all pits will be included in the final remedial action.

Please call me at (914) 255-5453 if you have any questions.

Sincerely,

Molly Gallagher, DHWR, Reg. 3

NYSDEC SITE ID #36003

Draft Field Sampling Plan

for the

Magna Metals Site

Town of Cortlandt Westchester County, New York

Prepared by

An ENSERCH® Engineering and Construction Company

April 1991

MAGNA METALS SITE ield Sampling Plan

Table of Contents

SECTION	TITLE	
1.0 INTRODUC		PAGE
		1-1
1.1 SITE	E LOCATION AND DESCRIPTION	
1.2 SITE	HISTORY AND PREVIOUS DATA	1-1
2.0 PROGRAM		1-2
		2-1
2.1 DESC 2.2 PERS	RIPTION OF SAMPLING PROGRAM ONNEL RESPONSIBILITIES	2 7
		2-1 2-1
3.0 FIELD IN	VESTIGATION ACTIVITIES	
	LE TRACKING SYSTEM	3-1
3.1	L Sample Identification	3-1
	OUMDIE ANGINERASI N	3-1
		3-5
3.1.4	Sample Documentation	3-5
		3-6
3.2 MOBIL	IZATION	
3.3 OUALT	TV ASSIDANCE (OWA	3-6
3.3.1	TY ASSURANCE/QUALITY CONTROL	3-11
	Field Instrument Calibration and	2-11
		2 11
3.3.2	QA/QC Sample Collection Frequency	3-11 3-11
3.4 FIELD	SAMPLING ACTIVITIES	2-11
2.4.1	Dentic Tank/Tooghing no.	3-14
3.4.2	Surface Water Sampling	3-14
0.7.0	DEUlment Sampline	3-14
3.4.4	Allfrace Soil Communication	3-18
3.4.5	Monitoring Well T	3-18
	Monitoring Well Installation and Subsurface Soil Sampling	3-19
3.4.6	Groundwater Sampling	3-20
	•	3-26
3.5 PERMEA	BILITY TESTING	3-20
3.5.1	Procedure for In City	3-29
	Procedure for In Situ Hydraulic Conductivity Testing	0 2)
		3-30
3.6 SITE S	URVEY	
3.7 EOUIPM	ENT DECONTAMINATION	3-31
3.7.1 1	Drill Pig and D.	3-32
3.7.2	Drill Rig and Equipment Sampling Equipment	3-32 3-32
3.7.3	Troundwater I -	3-32
. 0 2	Groundwater Level Measuring Equipment	3-32
3.8 DEMOBII	CIZATION	J-J3
		3-33

MAGNA METALS SITE Field Sampling Plan

TABLE OF CONTENTS (cont'd)

SECTION	TITLE	PAGE
4.0 PROCEDURES FO	R FIELD CORRECTIVE ACTION	4-1
4.1 FIELD CHA	NGES AND CORRECTIVE ACTION	4-1
5.0 <u>HEALTH & SAFE</u>	TY PLAN	5-1

1.0 INTRODUCTION

Presented herein is the Field Sampling Plan (FSP) for the RI/FS Investigation to be undertaken by Ebasco Services Incorporated (Ebasco) at the Magna Metals Site, Town of Cortlandt, New York. The purpose of the RI/FS Investigation is to gather surface water and sediment, groundwater, subsurface soil and surface soil samples to provide an adequate data base for delineation of the site contamination, performance of a risk assessment, and evaluation of remedial alternatives in a feasibility study.

The FSP will present all the procedures to be followed during all field investigation activities. Specifically, the FSP addresses:

- * Data Quality Objectives;
- * Applicable Standard Operating Procedures;
- * Responsibilities of Site Personnel;
- * Sample Analytical Program;
- * Sample Packaging and Shipment;
- * Documentation;
- * Field Sampling Program;
- * Procedures for Field Changes/Corrective Actions; and the
- * Health and Safety Plan

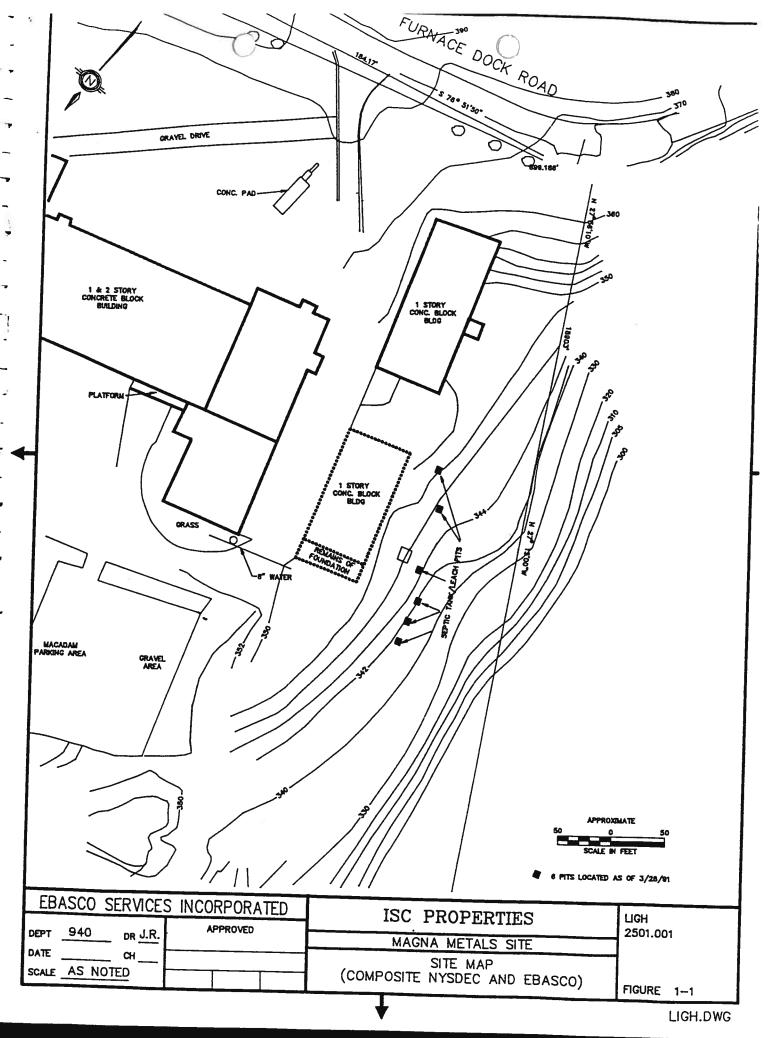
The Quality Assurance Project Plan establishes the structure of the quality assurance plan for each FSP; it is a generic document applicable to all field sampling activities. By using this document and consulting applicable Ebasco Field Technical Guidelines and the QA Guidance Manual, FSP site-specific Standard Operating Procedure (SOP) or QA/QC protocol has been generated. Any modifications necessary in these SOPs due to field conditions or other unforeseen situations, shall be recorded in the site logbook, documented on the appropriate Field Change Request (FCR) forms by the Field Operations Leader (FOL), and be approved by the Ebasco and NYSDEC Project Manager.

1.1 SITE LOCATION AND DESCRIPTION

The site is located in the Town of Cortlandt, Weschester County, New York near the intersection of Furnace Dock Road and Maple Avenue. Nearby towns include Peekskill, 2 miles northeast and Croton on the Hudson, 5 miles southwest. The Hudson River is located 3 miles west of the site. Road access to the site is

more than adequate as several routes are available including Route 9/9A, Bear Mountain Parkway, and the Taconic Parkway.

Locally, the site is part of a larger commercial property having several operating businesses which currently include: Con Edison and Silverman Furniture. The Croton Egg Farm is located west of the site. To the north, south and east are residental areas. Also to the north-northwest is an inactive emery mine. A wetland area is located between the site and residential area south of the site. Domestic water supply usage data is unavailable at this time and is currently being obtained by the DEC. However, it is believed that all residences are using a public water supply system. The site area can be seen in Figures 1-1 and 1-2.


1.2 SITE HISTORY AND PREVIOUS DATA

Following is a brief summary of sampling activities conducted at the site between 1982-1984. A more detailed site history from 1978-present can be found in the Magna Metals Site RI/FS Work Plan (Ebasco, to be completed 1991).

General Testing Corporation collected and analyzed 1982, leaching pit samples for selected trace metals, phenols, sulfate, nitrates and chlorides. cyanides, The results of EP toxicity analysis (4 samples) indicated no apparent metal leaching problems. Sulfates, nitrates and present at concentrations less than NYS Ambient Water Quality chlorides Standards of 250, 10 and 250 mg/l, respectively (TOGS 85-W-38); in addition, these inorganics generally have low toxicity and are present as background constituents.

On December 29, 1982, February 1, 2 and March 15, 1983, the Westchester County Health Department conducted investigations on the property and in Furnace Brook immediately to the west of the property. The results for the February 2 and March 15 sampling events were available for review. analyses (Feb. 2, 1982 sampling) are summarized in Table 1-1. The metal aesthetic considerations of iron and manganese concentrations at several locations, trace metals in surface water were not found to be elevated (i.e., when compared to NYS Ambient Water Quality Standards). However, several chlorinated volatile organics were detected in Furnace Brook; of major concern were the levels of trichloroethylene (TCE) in the septic tank, a leaching pit off the septic tank and at downstream locations along Furnace Brook and an unnamed tributary.

On May 15, 1984 the NYSDEC Division of Environmental Enforcement resampled at the site, specifically for metals and volatile organic compounds (VOAs). Sludge, sediment and/or surface water samples were collected at four locations along the Brook/tributary, the septic tank, and three sludge pits. The water and sediment/sludge sample results are summarized in Tables 1-2, 1-3, and 1-4. By comparing sediment/sludge sample

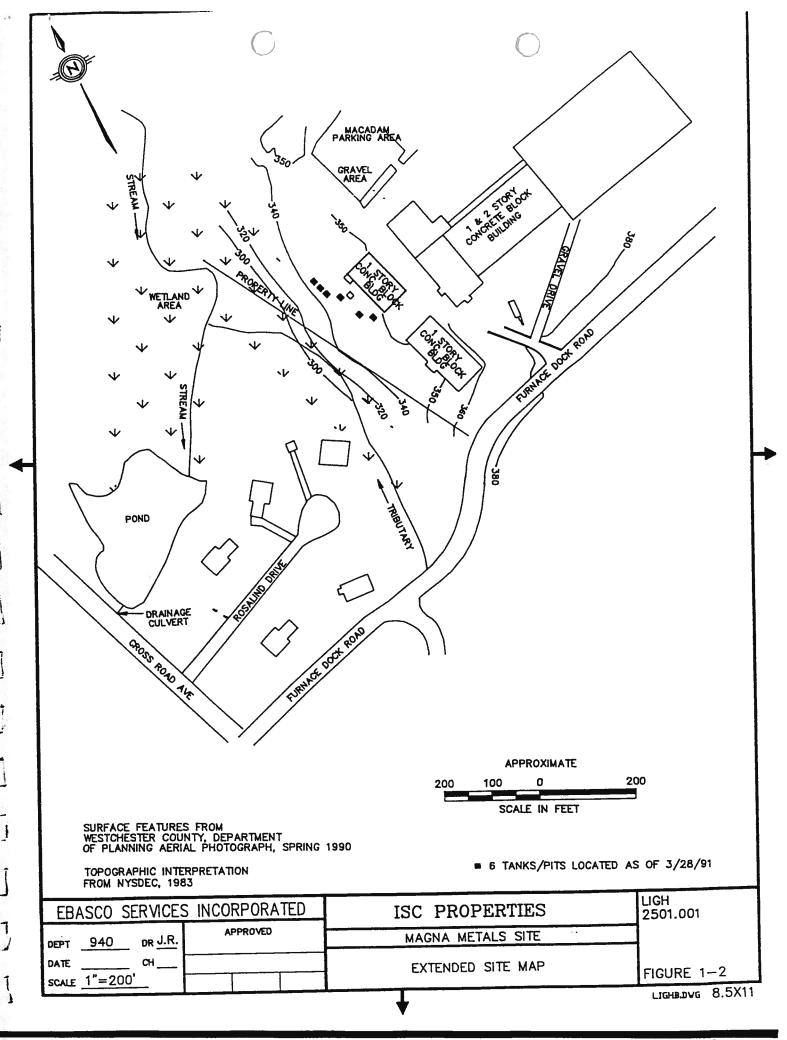


TABLE 1-1

SUMMARY OF TOTAL METAL AND CYANIDES ANALYSES WESTCHESTER CO. HEALTH DEPT. SAMPLING ON 2/2/83

		CONCENTRA	ION (ug.	/1)		
COMPOUND	NYS AWQ STANDAR	(1) <u>D</u> .		SAMPLE	NO.	
	HUMAN HEALTH	AQUATIC LIFE	3	4A	6	7
Iron	300	300	300	340	700	580
Copper	200	*	90	100	(20)	70
Zinc	300	30	(50)	(50)	(50)	(50)
Nickel		*	(10)	(10)	(10)	(10)
Cadmium	10	*	(2)	(2)	(2)	(2)
Chromium	50	*	(10)	(10)	(10)	(10)
Lead	50	*	(10)	(10)	(10)	(10)
Manganese	300	_	70	30	520	70
Cyanides	100	5.2	(10)	(10)	(10)	(10)

¹⁾ Human health-based and aquatic life-based Ambient Water Quality (AWQ) Standards are for surface water (fresh).

^{*} Aquatic life-based AWQ Standard or Guidance Value is dependent on water hardness...

⁽¹⁰⁾ Less than Detection Limit of 10

TABLE 1-2

SUMMARY OF TOTAL METAL ANALYSES NYSDEC SURFACE WATER SAMPLING ON 5/15/84

형 퓌	CONCENTRATION (ug/1)	STANDARD (1)	AQUATIC LIFE 01 02 03 SATTLE NO. 05 08 DELECTION	(10) (10) (10) 550 (10)	01 (10) (10) (10) (10) -	(10) (10) (10) 237 91	(10) (10) (11) (10) (10)	(0.4) (0.2) (0.2) (0.4) (0.2) 0.2	(1) (1) (1) (1)	(10) (10) (10) (10)	(4) (4) (4) 4.2	(4) (4) (5.9* 7,810*	(15) (15) (15) (15)	(3) (3) (3) (3)	**************************************
		40 STANDARD (1)	TH AQUATIC LIFE												

* Blank Corrected

Human health-based and aquatic life-based Ambient Water Quality (AWQ) Standards are for surface water (fresh) =

2) Guidance Value.

Aquatic life-based AWQ Standard or Guidance Value is dependent on water hardness. 3)

(10) Less than Detection Limit of 10.

TABLE 1-3

SUMMARY OF TOTAL METAL ANALYSES NYSDEC SEDIMENT/SLUDGE SAMPLING ON 5/15/84

	GLOBAL MEDIAN	DETECTION	<i>3</i> 0	Ü	ONCENTRATI	ON (mg/kg)		
COMPOUND	SOIL CONCENTRATION(1)	LIMIT	10	02	03	04	06 (Sludge)	07 (Sludge)
Arsenic	9	0.5	(0.5)	0.65	(0.5)	(0.5)	27.5	5.0
Antimony	-	0.5	(0.5)	(0.5)	(0.2)	(0.2)	(0.5)	(0.5)
Selenium	0.4	0.5	(0.5)	1.8	0.61	(0.5)	7.55	13.0
Thallium	0.2	0.5	(0.5)	(0.5)	(0.5)	(0.2)	(0.5)	(0.5)
Mercury	90.0	0.1	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)
Beryllium	0.3	0.1	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)
Cadmium	0.35	1.0	ĵ.	(-)	1.2	Ξ	3.1	1.6
Chromium	70	0.4	7.5	8.6	21.9	16.9	223	5.7
Copper	30	0.4	5.7*	115	36.5	100*	3,690*	15,800*
Nickel	20	1.5	30.1	40.3	56.2	39.8	27,500	13,800
Silver	0.05	0.3	0.30	(0.3)	(0.3)	(0.3)	0.81	0.70
Zinc	06	1.0	22.3*	28.2*	37.3	39.9*	8,310*	*005,6

* Blank Corrected

1) Bowen (1979)

(0.5) Less than Detection Limit of (0.5).

TABLE 1-4

SUMMARY OF VOLATILE ORGANIC ANALYSES NYSDEC SEDIMENT/SLUDGE SAMPLING 5/15/84

\$1	J	CONG	CENTRATI	ON (ug/kg)	(1,2)	
COMPOUND	1945/45/01	02	03	04	06	07
Acetone		_	190			
Trans-1,2-dichloroethene	i,	ž	300	1,400		
Trichloroethene	1		30		680	2,600
~ Vinyl chloride				2,700		
Total xylenes					42	7,100
、 Ethylbenzene						3,300

⁽¹⁾ Blank spaces in table indicate concentrations less than detection limit.

⁽²⁾ Detection limits are not shown here since they were not included in NYSDEC raw data package.

results to typical soil background levels and surface water sample results to M Ambient Water Quality (ndards, several observations can be noted. Analyses for 12 of the 13 priority metals analyzed in the surface water consistently resulted in low concentrations (i.e., mostly less than detection limits); water samples from the septic tank (05) and sludge pit A (08) did contain elevated As, Se, Cu, Ni and Zn concentrations. Trace metals in sediment samples indicated similar trends, i.e, the 12 priority pollutants were essentially present at background levels (copper was slightly elevated). Sludge samples collected from Pits 4 (06) and 2 (07), however, contained elevated As, Se, Cd, Cr, Cu, Ni, Ag and Zn. sludge samples resulted in the two for toxicity tests maximum EP the allowable below concentrations concentration (and mostly less than detection limit). results of trace metal analyses for NYSDEC samples basically confirm findings by the Westchester County Health Department that metals known to be in the leaching pits have apparently not reached Furnace Brook.

The results of VOA analyses on NYSDEC water samples show extremely elevated TCE levels in the septic tank (15,000 ppb) as well as a high concentration (190 ppb) in Pit 4 (see Table 1-5). Sediment and sludge samples also contained high levels of TCE; acetone and trans-1,2-dichloroethene were seen in the Brook sediments, and xylenes and ethylbenzene were detected in sludge samples collected from Pits 2 and 4 (Table 1-4). Consequently, the primary emphasis of the field investigation should be on volatile organics, especially chlorinated species such as TCE.

TABLE 1-5

SUMMARY OF VOLATILE ORGANIC ANALYSES NYSDEC SURFACE WATER SAMPLING 5/15/84

	, W	CON	CENTRAT:	ION (uc	(1,2)	
COMPOUND	10 10 01	.02	03	04	05	80
Acetone	¥	•				
Trans-1,2-dichloroeth			©.	25		16
Trichloroethene		6.6	16	62	15,000	190
Vinyl chloride						
Total xylenes						
Ethylbenzene						

⁽¹⁾ Blank spaces in table indicate concentrations less than detection limit.

⁽²⁾ Detection limits are not shown here since they were not included in NYSDEC raw data package.